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?’Q'b ABSTRACT
W

The stability of a gas bearing is treated by a new procedure
in which the bearing film is characterized by its responses to step-jump
displacements. Duhamel's theorem is invoked to generalize these step
responses in a system of dynamical equations. Stability is determined by
calculation of a "growth factor" for each degree of freedom.
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NOMENCLATURE

nth LaGuerre coefficient (equation 8)
jth LaGuerre coefficient (equation 10)
Ground-in clearance

the force in the "j" direction due to a displacement
in the "i" direction

the difference in Fi; between time t and equilibrium
at time zero (equation 4)

the response function observed at time t produced by
stimulus at time 1 (equation 4)

shaft transverse and polar moments of inertia
length of bearing

distances from shaft mass center to bearings one, two
nth LaGuerre polynomial (equation 6)

shaft mass

ambient pressure

shaft radius

a response function (equation 3)

a stimulus (equation 3)

time variable

Gauss integration weighting factors

small displacements in x and y directions
attenuation constant

shaft angular coordinates

growth factor (equation 14)
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NOMENCLATURE (Cont.)
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growth frequency (equation 15)

€ = eccentricity ratio
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viscosity
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shaft angular speed
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1. INTRODUCTION

Recent interest in gas hybrid journal bearings has promoted a
closer look at the stabilitj of rotor-bearing systems and, in particular,
at the methods by which stability might be predicted. In general, two
different methods have been used to handle the mathematical stability
problem. The first method treats small perturbations from a hypotesized
steady-state mode of operation and determines whether these perturbations
grow or diminish, The Routh-Hurwitz criterion is used in this connection.
The second method consists of direct digital computation of all dynamical
and fluid film equations and is known as the "orbit" method. It can
handle linear, as well as non-linear, aspects of the problem. Both pro-
cedures have been employed extensively in earlier gas-bearing stability

(1,2,3)*

work at The Franklin Institute and elsewhere.

The foregoing methods of stability analysis have their advan-
tages and disadvantages. The advantage of the perturbation method is
principally that of any linearized analysis; namely, that superposition
is possible and results are easily generalized. It has the disadvantage
that unusual geometries are not easily accommodated and that in multi-
degree-of-freedom systems the characteristic equation is exceedingly
complicated. The second method has great flexibility, and can incorpo-
rate grooves and other aspects of bearing design quite readily. It gives
shaft and film behavior in great detail. It is excellent for delineating
the performance of a particular design, but the lack of generality of its
solution makes parametric investigations expensive. 1Its principal dis-

advantage is its consumption of considerable computer time,

A new procedure for stability analysis is presented here which
utilizes the strong points of both the orbit and the linearized approaches.

The procedure obviates the necessity for a solution of a large character-

*
Number in parenthesis refer to references.

-1 -
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istic equation on the one hand, while avoiding repetitious calculations
of fluid-film pressure distributions on the other. Briefly, the method
consists of using an orbit program to give the responses to step—jump
displacements in each degree of freedom of a system. By means of

(4)

Duhammel's theorem these step responses can be used in a system of
dynamical equations. A possibility then exists of running linearized
orbit programs without the necessity of detailed fluid-film calculations
for évery case studies. The computing time of the original orbit pro-

gram is thereby greatly lessened.

-2 =
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2. TECHNICAL DISCUSSION

2.1 Re_sponse To Step-Jdump

In a linear system, superposition of forcing functions leads
to superposition of responses. If the system stimulation is sinusoidal
in character, the methods of Fourier synthesis can be used to predict
responses to generalized forcing functions. The same sort of gemerali-
zation is also possible if the response to step—jump stimulus is known,
and because this type of response is more readily obtained from an orbit

program, the analysis here will be based upon it.

Generalization of the response to step-jump, can be accomplished
by means of Duhamel's Theorem. A brief heuristic derivation is as
follows: Suppose that r(t), a response, is linearly related to s(t), a
stimulus. Let H(t-1) denote the r-function observed by time, t, as pro-

duced by unit increase of the s-function at time, t. Then we can consider

the more general response occasioned by a more general stimulus to be ob-
tained by superimposed step-jumps as shown in Figure 2-1. The jagged
contour can be made to approximate the smooth curve with arbitrarily

hign precision Dy reaquctrion OI AT.

Clearly,
r(t) = s(o) H(t) + ] (8s)_H(t - nd1) ,
n
= s(o) H(t) + z (%%Jn H(t - nAT)ArT, [1]
n

With nAt = 7, and n > », At + o, this equation becomes

t
r(t) s(o) H(t) + J é(r) H(t-1)dT, [2]
o

-3 -
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s(t)

at rl}— — ¢t

EIG.2-1 APPROXIMATION OF "FORCING FUNCTION"BY SUCCESSIVE STEP-JUMPS

Alternatively, integration by parts gives:

t
r(t) = H(o) s(t) + j s(T) ﬁ(t—r)dT. [3]
o

This second form is found more useful in present applicationms. }

2.2 Gas-Bearing Response Functions

To illustrate the character of the response to step—jump in a

typical gas-bearing application, let us consider the forces on an in-

finitely-long gas-lubricated journal bearing, as shown in Figure 2.2.

Corresponding to some vertical loading, the shaft center will, if stable,

assume some equilibrium position (xo, yo). In this case the integrated %
fluid film forces become: FX = 0, Fy = load. Now if the shaft is

suddenly given a small x-wise displacement, 8x, and held there, both E%

and Fy will be affected. There will be transient force responses to the

step-jump in "x" and new steady-state forces will asymptotically be

- 4 -
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W

FiIG. 2-2. INFINITELY -LONG GAS-LUBRICATED
JOURNAL BEARING
achieved. Similar results can be found for any small y-displacement,

8y. Typically, the results due to unit Gxi at t = o can be expressed as:
GFij = Fj(t) - %(xo, yo); Hij =C SFij/paRL‘ [4]

Orbit programs are well suited to provide responses for the

kind of displacement just hypothesized. Figures 2-3 and 2-4 give com-

puter results for an infinite journal bearing operating with ¢ = 0.6,

A - 1.50.  IL sbwuld ve uured dhaur Lie Hij curves give rtortal dlmension-—

less shaft forces —- not fluid film details -- and that these same curves

always apply for small deviations from the specified operating condition,

regardless of the rest of the shaft dynamics. The near-antisymmetry,

Hij = —Hji is reminiigint of journal bearings with a continuous film of

incompressible fluid . In fact, at time zero, when the gas is "trapped"

by the sudden small displacement (so that ph = constant at each point in

the bearing) the antisymmetry is exactly true.

For computer purposes, it is preferable to have the Hii in ana-
lytical, rather than in tabular, form. Asymptotically, it may be expected
that

Hi - Hi(m) + (constant)e_at. [5]

-5 -
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To represent intermediate behavior, an expansion in LaGuerre's
polynomials is used. These polynomials are chosen because they are or-
thogonal in the interval zero to infinity with a exponential weighting
factor. As a consequence, the coefficients found for these polynomials

are "best" in the least-squares sense.

They have the form:(ﬁ)
_ ¥ __x =0~
L (x) = kzo CET IR
Ly(x) =1-x, [6]
ect.

and

) e 'L (x) L (x) dx = §

o n m mn
The series approximation:

H(t) - H(=) = ] AL (at)e™", (71
n=o
is used. The coefficients An are determined by multiplication of both

sides of this last equation by Lm(ux) and integrating. Thus

L L (at) [H(t) - H(=)]dt = L nzo AL (at) L ( t)e *tae
= A /o [8]
m .

Prior to the running of a linearized orbit, an accurate value
of the attenuation coefficient "a" is not known and one must be guessed.
Fortunately, a choice is not critical, inasmuch as any "error" in the
guessed value will be absorbed by the LaGuerre coefficients. However,
if the attenuation coefficient is optimally chosen, the coefficients of
the LaGuerre series will approach zero most rapidly. To convert to a
new attenuation coefficient, it is not necessary to rerun the orbit pro-
gram. Instead, the following conversion relation can be used.

Thus:
Y BkLk(Bt)e_Bt =] AkLk(at)e_at, 9]

-8 -
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where:

3+ (-0 ™ g 4
‘ i+l n! (j-n)!

3
B, = ) (-1

J n=o Q

A [10]

To approximate the results in Figures 2-3 and 2-4, an o = 1.0
was used. When ten LaGuerre polynomials are used therewith, the numeri-

cal results are indetectibly different on the scale shown.

2.3 Stability Characteristics of the Infinitely
Long Self-Acting Gas Journal Bearing

The foregoing theory was first applied to calculated the sta-
bility threshold of an infinitely long self-acting gas journal bearing
operating with a steady load appropriate to ¢ = 0.6, A = 1.46. Informa-
tion on this geometry and operating condition is available from several
sources(2’7). The procedure for using the information from step-jump

responses is straight forward. Dynamical equations are written in the

form:
méx = 8F__ + OF
XX yx !
méy = 8F__ + 6F 11
y Xy vy » [11]
with
t L]
8F _=H o) Sy(t) + dy(t) H t-t)dt etc. 12
yx yx( ) Sy(t) Jo y (1) yx( ) [12]
Typical initial conditions assumed in the present case were:
8x(o) = -1 6%(0) =0
S§y(o) = 0 8y(o) = -1

The corresponding lineareized orbits were computed numerically. Eventual
growth of the displacements 6x and 8y was taken to indicate instability,
with contrary results being taken to indicate stability. Figure 2-5
shows a linearized orbit deemed to be stable, Figure 2-6 shows one deemed
to be marginally stable, and Figure 2-7 shows one deemed to be highly un-
stable, Physically, the difference between these cases lies in the mass
associated with the shaft.

-9 -
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To remove as much as possible the personal judement factor
setting the stability threshold, a growth factor was calculated from

orbit results. Asymptotically §y was assumed to possess the form:
sy(t) = AePt sin (vt + ),

and the growth factor was computed from four successive values of &y
(spaced by At).
Thus:

2

280t _ 53 % %)
2
8y, 8yq - 8y;

The associated frequency "y" was also of interest:

3y, + 8y e-28At

0 2

cos (yAt) = ryY .
2 dyl e

in

the

Figure 2-8 shows the growth-rate found for the given operating

condition € = 0.6, A = 1,46, and various values of dimensionless mass.

MC w?
4rp L

The critical value of 2.17 converts to

this last value is compared with the results®of Marsh and of Castelli

and Elrod. The ratio of the critical value of "y" as obtained from
eq. [15] is conpared in Figure 2-10 with Marsh's work. Agreement is

cellent in each case.

Computer runs to provide individual points on the curve in

= 0,831. In Figure 2-9

ex-—

Figure 2-8 can be performed very quickly (approx. 30 secs on a Univac -

1107 computer). Part of the speed achievable is due to a special inte-

gration procedure used in the convolution integral. To obviate the need
for using data at every time step, a modified Gauss integration rule was

adopted for which the locations and ordinate weighting factors Wi are

given below.

- 13 -
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X i
0 .197197636
8/40 . .199459835
15/40 .139711837
19/40 .062229510
The rule is exact for sixth-degree polynomials and nearly exact for poly-

nomials up to thirteenth degree. (For example, it gives i x13dx =

0.07136 instead of 0.07143).

2.4 Stability Characteristics of a Two-Bearing System

To show the versatility of the new step-jump technique, a two-
bearing system was next studied. This system was conceived to consist
of two equally-~loaded long bearings each similar to the single bearing
discussed in Section 2.3. Figure 2-11 shows the geometrical arrangement
and defines linear and angular coordinates appearing in the dynamical
1 and Q)

about the x, y and z) axes respectively through the shaft center of gra-

equations. The shaft rotates with angular velocities (—az, a

vity and their time derivatives are of disturtamce magnitude.

s 1 x,2 ?
M8y, = OF_ , + 8F_ , . 16
M y,1 Ys2 (16]
Here § represents the force in the x-direction on the shaft by bear-

X,1
ing #1, etc. The average linear coordinates of the shaft within the

bearings are:

6x

1 5XM + Ll Gal ze 5XM - L2 6a1

GyM + L1 Gaz Gyz = GyM - L2 6a1 [17]

Gyl
The separation of the bearings is presumed large enough to neglect the

effects of conical misalignment on forces or torques, Therefore:

- 16 -
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t
éFx’l = Hxx(o) le(t) + fo 6xl(1) Hxx(t - 1)dt

t
+ HYX(O) Gyl(t) + Jo Gyl(r) ny(t - 1)dt (18]

etc., where the H-functions here are the same as for the single bearing
of section 2.3. The angular acceleration equation becomes:

Tptly
I8, =-I%, + (L, oF

I %, + (L, 6F, ;= L, 8F,_ ,)>

b4 >

g2 -l 5Fy’1). [19]

Here IT and Ip are the transverse polar moments of inertia.

For the brief, illustrative study of two-bearing stability, a
system was taken which has marginal trahslational (as opposed to conical)
stability. A dimensionless mass (as per Figure 2-8) of 2.0 was chosen.
For large enough bearing separation, the results of Section 2.3 are dup-
licated. As the bearing locations are brought together, the immunity of
the system to conical whirl is reduced and the conical stability thres-
hold is transgressed. These features are illustrated by Figures 2-12 to

2-15.

For the response shown in Figures 2-12 and 2-13 the total bear-
ing separation is 20 , and the bearing system is stable in both the trans-
lational and conical modes. On the other hand, when the bearing separation
is reduced to 4, all other operating conditions remaining fixed, the
translational modes remain stable, while the conical modes become unstable.
This fact is shown in Figures 2-14 and 2-15. Figure 2-16 shows the coni-
cal orbit of this unstable condition, and Figure 2-17 shows the determina-
tion of the stability threshold by means of a plot of bearing separation
versus exponential growth factor. The critical bearing separation differs

from that given by Marsh's approximate formula by less than 8%.

Listings of the digital computer programs used to implement

the above analyses are given in Appendix A.

~ 18 -
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BEARING SEPARATION FROM SHAFT MASS CENTER ELI, EL2

5.0
l_EL | | EL 2’|
[ . ]
\SHAFT MASS CENTER
40—
x CRITICAL
SEPARATION = 3.14
(STEP-JUMP)
3.0
A =146
o= 086
MASS= 2.0
POLARI = 0.388
TRANSI = 47.0
2.0— AT = 0.05
ELI=EL2
1.0 I I l I l |
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GROWTH FACTOR 3 OF Q, COORDINATE

FIG. 2-17. TWO BEARING SYSTEM—CRITICAL BEARING SEPARAT/ION
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3. CONCLUSIONS

The utility of Duhamel's method has been demonstrated for nu-
merical investigations of sfability and dynamics of bearing systems.
This new "'step-response" method complements bearing orbit-programs by
permitting rapid parametric examinations of stability-~in-the small. In
many instances, the method would appear to be preferable to methods em—
ploying complex variable in that (a) computed quantities have easily

interpreted physical counterparts and (b) the complexity of the procedure

augments only slightly with system size.

- 25 -
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4. RECOMMENDATIONS

1. As a consequent of the implementation of the step response
method, it appears desirable to standardize sections of the analysis,
such as the manner by which the response functions are obtained, the de-
termination of the LaGuerre coefficients, the optimization of the attenua-
tion factor, etc. so that these sections can be used as library routines

for other types of bearing configurations.

2. The method described in this report should be used to
study the stability of other types of bearings. In particular, the ex-
ternally pressurized thrust bearing and_hybrid journal bearings. With
the appropriate organization of the component parts of the analysis,
the stability analysis of these more complex bearings can be done in a

straight forward manner.

- 26 -
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The program used to produce the LaGuerre coefficient (ROSIE)

for a long, plane journal bearing was compiled on an IBM 7094 in

FORTRAN IV and uses "NAMELIST" for input. This program is an adaption

from a more generalized program and, as a consequence, has certain input

that are not applicable for the type of problem treated in this report

ROSIE contains the following routines:
MAIN
SUBROUTINE CUREAL (KAY)
SUBROUTINE SET 1
SUBROUTINE ALFA (KK)
SUBROUTINE FILM

SUBROUTINE FORCE (K)
SUBROUTING QQO

FUNCTION ALAGER (N, ALPHAT)

The
SXM
SYM
SAl
SA2
SB1
SB2

PLAMDA

ROVL
DT

INF

ORDER

ALPHA

NCASE

MAIN program require the following input in NAMELIST formh :

]

0.0
eccentricity
0.0 no shaft rotation
0.0
0.0 , .

no bearing rotation
0.0
no. of circumferential grid intervals

20. of ;xial grid intervals

uw (R

e ()

R/L

time step

maximum allowable no. of time steps before termination
FALSE

order of the LaGuerre Poly. (an integer)

the attenuation constant "a"

3

case no. (an integer)

Al
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SUBROUTINE CUREAL is specially written for each type of prob-
lem and contains a specification for the step-~displacement from equilib-

rium; DELDEG is the size of the step taken.

For each degree of freedom, the LaGuerre coefficient are punched
out in a loop which goes from K = 1, ORDER. The information on each card
is

K, ORDER, XM, YM, AX(K), AY(K),

where XM and YM are the coordinates; AX and AY are the coeffic-
ient representing the forces in the X and Y directions. The FORMAT is

213, 2F7.3, 2E18.8, 26 X 2H$P

The Dynamics program which reads the punched card output listed
above was compiled in FORTRAN IV on a UNIVAC 1107. The routines used are

ELRO (Main program)

SUBROUTINE LAGUER

FUNCTION ALAGER (N, ALPHAT)

The input consist of
1. READ:NDEG, NORDER, KSTEP, ALPHA
FORMAT 316, F10.0

where
NDEG = no. of degrees of freedom (2)
NORDER = order of LaGuerre polynomial
KSTEP = the interval at which the growth factors are to be

printed out (10)

2. For each degree of freedom:

READ: punched card output described above

3. READ: (H(m)i i=1,2) J=1,2)
FORMAT 4E15.8

j’
(this input must be punched from printed output of
coefficient program)
4. READ:NT, NTMAX, DELTAT
FORMAT 216, F10.0

A2
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where
NT = integration interval
NTMAX = maximum no. of time steps
DELTAT = the time step DT x NT
5. READ:KLUE, AMASS,'ELl, EL2, TRANSI, POLARI, ASYMM
FORMAT 16, 6F10.0
where
’ KLUE = 1, go back to point 5 READ
= 2, go back to point 4 READ
™ 3, Stop MC o2
AMASS = shaft mass (non—dimensignal) Zf;;ﬁf
EL1l, EL2 = distance from shaft mass center to center line of brg, 1

and 2 divided by length of bearing
TRANSI, POLARI = shaft transverse and polar moment of inertia (non~

dimensional
Ip ca?
Ip 4 paRL3

ASYMM = initial displacement of brg. 1 relative to brg. 2

The program listings follow.

A3
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\ﬂh(ﬁll\i"‘

10

15

25

30

35

36
34

40
42

50

FG“MnN SVHoSYMaSA1 Sl23SR1 SR2, T, M, N.ML, MO, NNIBTHE DET‘.‘“OYMC‘lt

DFLDEG,KO!UNT
COMMNN/FACTOR/FE,FFE.FFFR,FFFFF
LOBICAL FAIL,PASS, INF
INTERER NUT,NRDEP

NAMEL IQT/INPUT/SXM,SYM,SA1,S42,5R1,SR2,M,N,

1TMAX, IMF,ORNDER, ALPHA,NK,NCASF
IN=5
NiYT=A
KAYz1
FATL. = .FALSF,
PASS = ,FALSF,
KLNFE=1
RFEADTIMN, INPUTY
WRITFINUT,.1)
FORMATI1H1)
WRITFINUT, INPUTY
PRAVIL. = ROVLe*2
rAlLL SFTH
ralL FrL™
FF = S/DTHE
FFE = 1,/NTHE**2
FFEF = ,5/DETA
FFFFE = 1,/NETAwnD
no 15 1=M1,M2
NET,1) = HITa1]
OUT,MNYs HIT,NNY
IFTFATI NG TO 200
IFtPASS) 60 To 25
Np 21 1sMy,M2
nn 20 g2 ,N
NLT,J) = HEY,.)
1K=1
CONTINUE
nn 3N )=2?,N
Nl1,01=QtMes, . ))
NIMe3,0)1=013,4)
TFII~FY (D TO 35
G0 TN 34
nn I tsMY,M2
NE1,11 =2 0l1,2)
0f1,oNYs al1,N)
cALL QNQ
TF [FAIL)Y GO Y0 2nan
IFIT JLE., TMAY) G0 TN 40
RO TN K0
T = TenNT
FNPMATEIT7F1% .7
IK=T«wd
60 TN 75
nO 60 T3M1,M2
nn e =9 ,NN

A4

L e A ik A

A2,R1,R2,H163,17) stssx.ciexl.uvusvas 171, HETAL63,17),
063,171, PlAMﬂA.RROVLLahT.OOIGS 171, TMAX,INF,EO163,47Y,
PL63,17Y, rnPCFx!51!.FURCEY!Si!.TDPK7151).TOIKYI51!.ORnER.
ALPHA.AXt?na.Avtznl.axZIZOJ.AV2t201.A!NFIZD! NK,KLUE,

PLAMDA,ROVL,NT,




KS=1
CalL FNROFLIKSY

T OWRITFINUT,16Y T . ‘
MRITE[AUT, 4211 IPLT,JY,421,171,183,3%9)

. WRYTE[NUT,A1)F0RCEXI1),FNRCEY[1),TORKXTIL) . TORKY (1)
61 FORMATI/19H FAUILTRRIUM FNRCFS /7 &X 4F187R)
70 Al SFTH

FAlLL CURFALIKAY)
77 GO TN 171,10,150) ,KLIF
71 'FIPASK] GO Tn 9N
no RO YzMq,M2
NN RN =1 ,MN
B0 N1, )=E L1, N
90 raj FrL™
NN G2 1My ,M?
NET,1)zHIT,1)
92 N1, "N1=HTT NN}
91 Nn 170 ITFRe=1,5n
nA 25 Js2,N
Nl1,.01=0IMe1,.1)
98 NM+3, 0120135 4)
IFIINFY B0 TO 97
G50 TN OB
97 NO 9F =M1 ,M2
N(1,11=0"11,2}
96 NIT,*NY=[Y, ,MNY
9R rAlL OrQ
TF [FATL) 60 TO 200
CAtl FORCELITER)
CAIL ALFALITFR)
100 T=T+"T
WRITEINUT,105) ,
10% FORMETI1HY 3IX 1HT 12Y AHFOROFX 12X 6HFORCEY 13X SHTORKX 13X
1 BHTNMRKY )
WRITE(NUT,16) T
16 FNRMAT [F15,81
no 110 L=1.50
L=z SO[KOUNT=1)4| _
110 YRITEINUT,1111 LL ,FOPCEXILY,FORCFYILY,TORKY (L), TYORKYLL]
111 FORMATI1Y 14,4F1R R)
WRITFLPUT, 120
120 FOPMATI1HY S0Y POKLARUFR COFFFICIENTS 7/ SY 1HT 16X 2HAX 16X 2HAY
118y THAX7 15¥ 3HAYZ 14% 4HAINF)
N0 130 L=1,0RNER )
130 WRITF{NUT, 131 1LL,AX LY, AYIL)AXZILY,AYZILY,AINFIL]
131 FORMATIZ2Y 14,5F1R R)
KOUNT = <QUNT + 13
IFIT I F. TMAX) 6N TN 0%
KAYzWAY+1
YXz= ALPHA/DELNER
PO 140 K=1,0DRNER
AXTKYSIAYIKI=AINFIKI«FARCEX(50) )% ¥X
AYTKIRTAYIK)=AINFIK)«FORAFYIS0Y e XX
WRITE(NAUT, 1611 K, ORDFR, XM, YM, AX K], AY K]
161 FOPMATI213,2F7,3,2F1%,R,26X 2HSP ]
AX7 I« Y=[AXZ[KI=ATNFIK)«TOARKXIS0)YexY)X

AS




170

140
200
201
150

URITFIAYT,1201

nn 170 L=1,0RNFR )

WRITFINUT,13L1LL,AXIT 1,AYILYLAXZILY,AYZILY,AINFIL)
IFIKAY ,LFe NKY 0 TN 70

WRITFINUT,1401 KAY

FOPMATI1Y4HKAY= 14, 6H GOOF
WRITE[NUT,201INCASF

FOPMATP4RY24HNALFAR, 7ERN ,CASE NN, 15

eTnp

FNR

SIRFTC KIURFAL 1 187,.SnN

w

= o S | I .

10

N s W

SURRNUTINF CUREALTKAYY

FOMMON SYM,SYM,SA41,542,SR1,SP2, T, M, NaM1, M2 NN, NTHE,DETA, XM, Y™, a1,
A?,R1,R2,H163,171,S163),Cl631,HTHF163,17),HFTA163.371,
0163,173,P1 AMNALRROVLLLNT,Q0163,171,TMAX, INF,EQ[63,171,
Pr63,171,FARCFAX{511,FNRCEY(S1), TORKY (511, TORKY [511,0RNER,
ALPHASAXI20),AYI2N],AXZ120),AYZ 1201 AINFI20),NK, KL UF,
NFLNFG,KOUNT

LAGTral. FAIL.PASS, INF

INTEGER )T, 0ORDER

OGN T0 (1020324541, 4AY

KL =1

ym= 7

NEI NFGR=,1

TMAY=4,7124

RO TN 40N

KLitE = 1

Yz 1

NEENEGE LY

60 TP 100

FLUuF =

N TN 109

CONMTINHE

rFONT INHE

COMTTNUE

RETUPON

FND

SIRFTC SSFTL

J B WA

SURRMUTIME QFTL

FOMMON SYMySYMaSA1,SA2,S8R1,SP2,ToM, Ny M1, MP NN, NTHE,DETA, XM, YM,41,
A?,R1,R2,HIAI,171,51A3),C1651,HTHFI&3,17),HETAL63,17),
Q163,171,P1I AMPALRRAVLE G NT,GN[A3,171,TMAX, INF,FOI63,17Y,
PI63,17),FNRPCEYI511,FORMNEY 511, TORKY([51),TORKY(51),NRNER,
ALPHA,AX[20Y ,AY P20 ), AXZ1201,aYZ1201,AINFI20),NK,KI| UF,
DELDEG,KOUNT

INGTIrAL FATL,PASS, INF

INTERED nuT,0RDER

XYM = SYM
YM = QYM
Al = S»a1
A2 = SA2
21 = SR
R2 = SR2
T = n,

VOUNT = 1

N0 10 M=1,0RNER

A6



AYIKYSO U

AX7[w1=0,0
. AY?2[K]1=20.0
10 AINFTIKY=N,0

RETHIAN

[ =3 Ml

SIRFTr AALFA £ 187,507

QUHRRAUTINE ALFA[XK)

COMMNN SYM.SYM)SA11562;Sp115920T3M3N1M1.MQ;NN;QTHEpDETApo.YMpAl,
A?,R1,R2,H1A3,171,S0631,C1631,HTHFTA3,17),RETAL63,17]),
0163,171,P1 AMPA,RROVLI,LNT,QN163,171,TMAX, INF,EQI63,171,
PI63,17),F0ORCFXISL)FORCEYIS1Y,TORKYXI[S1),TORKY[51),NRNER,
ALPHA,AXIPNY,AYI2N),AXZ120),AYZ1201,AINF[201,NK,KLUF,
DFELNERLKOUNT

Lonr1ral FATL,PASS, INF

INTFReR AUT,NRNDER

ALPHAT = ALPHAST

™) 17 =1 ,NDRDER

POI YN = ALAGFREK=1,ALPHAT)

AXTWKY 2 AXIK] + DY+*PN| YN*FORCEXTIKK)

AYIKY = AYIK) + NT«PALYNSFOQCEY XK

Tt B NN A

AX7[K] = AXZ7IK)+NT#POALYN*TNRIKX KK

AY7[%] = AYZIK]+NT+PALYN«TNRKY [ KK)
10 AINFTKY = AINFIKY4NT+POL YN :

RETURN

FND

SIRFTE FFIILM LIST,SnN

QURRMITIMNE FUUM

FOMMON| SYM,SYM,SA1;SAQ;SQ1,SP2.T.M,N.H1.M?:NN.DTHE.DFTA.YHpY“n61.
A?,R1,R2,H163,171,51631,CH631,HTHFI43,171,HFTA163,17],
G163,1731,%1 AMNA,RROVLL,NT,001£3,171,TMAX, INF,EQ(63,17],
Pl63,171,FNRCEXIS1),FORCEY[S1),TORKY[511,TORKY[511,0RNER,
ALPHALAXIZ2NY,AYE2N) , AXZ120]),AaYZ1201,AINFI201,NK,KI UF,
DFLDEG,KOUNT

LAGYICAL FAIL,PASS, INF

INTERED NY,NRNER

91 = %,14159265

2An = PIF/180.0

NTHE = 3A0,N*RAN/FLOATIM)

NETA = 1.0/FLOATIMY

AW

NO 10 Js1,NN

7 = =,5 +FLOAT[J=11#NFT4

YPRIM = ¥YM ¢ [A1=R11%7

YPEIN = YM « [A2=R21e7

N0 16 TsM1,M2

ARG = NTHFEZFLNATI T=M1)

S{T1=SINIARG)

CL11=CNSILARG)

H{1,J)1 = 1,0 +« XPRIM¢S{I1 + YPRIMer1)

TFIHITI,dY JLF, N.NY A0 TN 2D

HTHUET],J) = XPRIMeC[T1e YPRIMeS[]]
10 HETAIT,J1 s [A1-2414S(T)e [A2=R21*r( 1)
30 RETUPN

A7



$IRFTC

U\b(d’\)‘-‘

10

30
40

20

SIRFTC

B W N

RETU™N
FNR
FFOPC® | IS87,SnN
SURRNMUTINE FORCEIKY
NIMFMNSTON SAVA(5).SAV2{51,54V3t5),54V4715)
COMMON SYMaSYM, 541,582, 5R1,SR2, T,M, N, M1, M2 NN, NTHE,DETA, XM, Y™, 41,
A?,B1, n?,~765.171.9r633.rt6!1 HTHFTA3,17),HFTA[63,171,
Q163,171,211 AMNA,QROVL,NY,Q0163,171,TMAX,INF,EQI63,17Y,
Pl63,17),FORCEXT511,FORCEYI61Y, TORKY (511, TORKY 511, 0RNER,
ALPHA.AX(?ns.sviznl.szzznl.AYZrzna;AINrtzos.uk.xtus.
DFLNFG,XKOUNT
LORIrAl. FAIL,PASS,INF
INTFERFER? NYyYT,ORNDER
np 20 st ,NN
\qx=0|a
9Y=0.0
SX7=f
SY7=0,N
7 = =5 + FLOAT[J=1]#DNFTA
MNz=M+1
N0 10 tsMy,MN N
PILT,JY = QllaJl/HIT, UY
SX = SX + P[I,J)+S{]VenTHE
SY = SY + P{l,J)*r{lVenTHE
SX7= Z*SY
SY7= Z#*SY
IFLJ.EN.1Y GO YO 30
NZ = DFTA
GO TN 40
DZ = 0.0 ‘
FORCFXIK) = CICINTI1,N2,SXsSAVY)
FORCFYIK! = CICINTI1,N7,SY,SAV2)Y
TORKY[K)= FLFYNT!1.07 eX7,SAV3)Y
TORKYEKI= CLOINTI1,.D7,8Y7,54v41
CONTINUE
RETURN
FND
D7A L1ST,SnNP
SURRNUTINE 0NN0
CAMMON SYM,SYM,SA1,S42,S5R1,S5R2,TaM,NaMI, M2 NN, DTHE,DETA, XM, YM, AL,
A?,B14R2,4163,171,5163),Cl631,HTHFIA3,17),HFTA163,17],
0163,17),P1 AMNA, RROVLL,DT,Q0163,171,TMAX, INF,EQ(63,17Y,
PI63,171,FNRCFXIS1),FORCEY[5B1), TORKX 1511, TORKY [51),0RNER,
ALPHASAXI2NY,AYT2N),AXZ120) ,AYZI201,AINFL20),NK,KLUF,
DFLLDEG,KOUNT
COMMON/FARTOR/FESFFE,FFFF,FFFFF
LORIrAL FAIL,PASS, INF
INTERE? NUT,O0RNER
ND 10 T=My,M?2
no 10 1=2,N
NT=[r{T+1,d1=Nl1=1,J1)eFF
ATT = [Q0T+1, 41471 1=4,.j1=2,e001, 1 1«FFF
NZ = [(N[1,J+11=001,)=11]+FFFF
N77 = 1Q0TaJ*1) + NIY,0=11=2,4011, 1) *FFFrE
NO = = QT + (001 0ixlant, )¢l Dt gl el o) eQTT=NTeHTHEL],J?
+RROVLL*INZZeH {1, j1=02+HETAIL,UY)14HI 1, ]« (0Twe24RROVLLe

A8



1n

20
21
25

N7#+211/PLAMNA
NOT1.JY = O(1,J1¢nNenT

1Ftonty, )y .61, 100,y p 1O 28

CONTINUE

NN 20 1 & Mq,M2
no 20 4 = 2,N
LY, 1 = a0t N
RETUCN
VRITELNUT, 26

26 FORMATI 9WH BLNW P 1

FatlL = ,TRUE,
RETURN
FND

SIRFTC LG LIST,SnN .
FUMCTINN ALAGER({N,ALPHATY
<=1 ,.0
NNEN+1

11

nO LN wz1, NN

SS=SvA| PHAT®F| DATIM-We1 ) /FLOATIK*K)

ALAGFR=ALAGERSS
QETHRN

A9




FLT

. CFOMMON SY[2),SDX121,¥(4,1000),DEX[4,10003,0DX{2),Ht2,2,1001,
HPHT412,2),HRUTS(2, 21, HNWT612,21,HDWT712,2),
NELTAT,al2,2, 1N),HINFL2, ?!.AY!lﬂ!.AY[iO) NT,ALPHA,NT,
MDFGsNORDER,HNNT{2,2,100),HDUTIL2,21,HNWT212,2],HNNT3(2,?)

10

11
20
15
23

19

21

22
400

410

3n

13

9

1?2

60

50

FLFD,3.,660406, 41n48

1
1

N

1:<HM!4‘.YM[10n0]-Y"[‘ﬂﬂﬂl ALPHALILINON),ALPHA2[1000)

1,RFTA[4] - B
FOMMNMN MKY , MK, MKTZ M4 ,MKE, MKE, MK T
RFANISL, 17 INDEGSNORNER,KSTEP, ALPHA

FORMAT I 316,F1n,0N)
nn 27 J = 1,NNFG
no 2% 1 = 1,1n

PEANTS,11) KN,0Q,XN,Y0,AXIKQY,AYIKO)
FOGMAT’213.2F7.3D?F1R.R)

A[J:”‘] =Axtl,

ALJ,2,1) =Ayli) .

PEANTIS,,15) [(IHINFIJ,T1,.1=29,21,U=1,2)
FNRMATI4F1%, 8

KRITFLA,23) LIHIMNETY,1Y,121,2),0=1,21

FOPMATI24KH WINF 1,1 1,2 2,1 2,2 = 4F18.8

HMRITF[6,19)

FORMATE//76H DRNFRAY AHAL1,11, 12X 6HAT1,2Y , 12X 6HAL2,1)

1AHAL®,2] / |
nn 21 Mz31 ,NORNER

1

WRITETE,22Y M,AL1,1,M),A19,2,N),A12,1,N),412,2,N)

FORMATIZ2Y 12, 4F1R,R)
REANTS,41C) NT,NTMAX,DNFLTAT
FORMATI2T6,F10,N)

FTvAY = MNYMAY

FNT = M7

NNTT=HT+5

NT = NFLTAT/FNT

REANIS,131KLUF.AMASS,FL1,FL2,TRANST,POLART,ASYMM

FORMATIIA,6F1IN,N]
FL=F! 1«EL2Z

WRITFTE,9INNEGINT,NT,NORNFR,NTMAX, ALPHA, K] IIE, AMASS,POLARY, TRANS],

1 FL1,FL?2,ASYMM

12¥

FORMATI24H NN, OF NER, OF FRFENOM = 12//234 INTEGRATION INTERVAL =

113,15H WITK TIME QTEP F15,R // 23H LAGUEnéF POLY URDER = 12,
217K MaA¥ TIME = 14, 10H ALPHA = F15.R,9H
IFIR.R,EX 9HPN| AR] = c£45_R,5Y 9HTRAMS! =

F15,87/

4 AHFL1 = F15,Rs 5Y 6HFI 2 = F15,8, 5X BHASYMM =

PEANTIS5,121 [SYXIK),SDY(K],K=1,NNEG)
FOPMATI4F12,01

no 50 1=1,NDFAR

MTIT = MT+4

N 60 |Ls1,NTT

Y{1,/ 1 = SY(11

Y{142,L )=SX[11+ASYMM
NEY{1+2,.1=0.0

NEYIT,L) = 04N
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